Ein Harvard-Studie nahm Roger Federers Antrittsgage am ATP-Turnier in Rotterdam unter die Lupe. Sie soll sich in 10 Jahren verzehnfacht haben.
Über die Antrittsgagen ihrer Top-Stars an Turnieren sprechen die Organisatoren nicht gern. Eigentlich gar nicht – es sei denn, es sickert hie und da eine Geld-Information durch.
Nun veröffentlicht die Harvard Business School eine Studie über die Startgelder der Superstars Roger Federer und Rafael Nadal. Schwarz auf Weiss – am Beispiel des ATP-500er-Anlasses in Rotterdam.
Dieses Jahr soll der in Australien frisch zum 20-fachen Grand-Slam-Sieger avancierte Schweizer für seinen Start in der holländischen Hafenstadt 2 Millionen Euro verlangt haben. Unklar ist, für wieviel Roger dann definitiv spielte, denn vertraglich sei nichts abgeschlossen worden. Gelohnt hat sich der Antritt ohnehin – Federer kürte sich in dieser Februar-Woche mit 36 Jahren und 195 Tagen zur ältesten Nummer 1 der Geschichte.
In jüngeren Jahren war er bescheidener. 2007 lag seine Antritts-Forderung gemäss Harvard-Informationen in Rotterdam noch bei 250'000 Euro, 2012 bei 850'000 bis 1 Million. Eine ähnliche Entwicklung ist auch bei Nadal festzustellen, dessen Ansprüche seit elf Jahren von 200'000 auf 1,2 Millionen Euro (2017) anstiegen. Spieler im Bereich der Top-8 bis -10 könnten an die 200'000, darunter bis Rang 20 maximal 100'000 Euro verlangen, so die Studie.
Dass die Finanzierung von Turnieren, die unter Masters- oder Grand-Slam-Level liegen, und die hohen Startgagen ihrer Aushängeschilder zum Problem werden können, zeigen zwei aktuelle Beispiele in der Schweiz. Zwischen Roger Brennwald, dem Turnierdirektor der Swiss Indoors in Basel, und Federer kam es zum Zerwürfnis, weil dessen Management den Preis zu sehr in die Höhe trieb. Weil dem früheren Balljungen sein Heimturnier am Herzen liegt, spielte er 2013 und 2014 gratis und ohne Vertrag in Basel.
2015 einigten sich die Parteien wieder – zwei Jahre später unterschrieb «King Roger» zur grossen Freude aller, die bereits seinen Rücktritt fürchteten, sogar einen Dreijahres-Vertrag bis 2019. Zu welchen Bedingungen bleibt geheim.
Öffentlich verkündete hingegen jüngst Stan Wawrinka den Groll über sein Heimturnier in Genf. Als der Vertrag, der ihm 500'000 Franken jährlich sicherte, nach drei Jahren auslief, habe ihm Turnierdirektor Rainer Schüttler 80'000 Franken angeboten. Das empfand der Romand, der die Geneva Open immerhin zweimal gewonnen hat, als unter seiner Würde; in der Tat ist dies kein marktüblicher Preis für einen dreifachen Grand-Slam-Sieger. Da spielte Stan, der nicht als geldgierig gilt, doch lieber mit einer Wildcard, dafür ohne Vertrag und Kohle.
Germany has always been known for producing excellent armored vehicles. A combination of features that arguably make it the world’s best tank, and fire sale prices stemming from Germany’s rapid disarmament, have made the Leopard 2 the standard main battle tank in Europe and beyond. The same level of innovation and execution was shown in the late 1960s, when Germany’s Marder became the west’s first Infantry Fighting Vehicle (IFV). Designs like the American M2/M3 Bradley, Sweden’s CV90 family and new SEP, Singapore’s Bionix-II, and Korea’s new XK-21 have stepped far beyond that legacy, however, and even the Russian region has continued to update their BMP designs. Meanwhile, the nature of military operations has changed to emphasize modularity, out of country missions, advanced electronic communications, and strong protection against threats like land mines.
The Marders need to be replaced, and this became a priority even within Germany’s limited defense budget. In response, German armored vehicle leaders Rheinmetall & KMW formed a 50/50 joint venture to design and produce a solution that would address these issues, and return Germany to a leadership position in the tracked IFV field. Enter the new Puma IFV – which has just received a EUR 3 billion production order from Germany.
The Puma carries a crew of 3, plus 6 fully-equipped troops and its weapons array. PSM’s design goals for the Puma were simple to state, but difficult to execute:
Optimum protection against any type of threat for maximum survivability of the crew. The Puma features two different levels of protection. The basic ‘Class A’ configuration is qualified in accordance with STANAG 4569. It provides protection against RPG-7 rockets and armor-piercing rounds under 25mm in the frontal arc, and artillery shell fragments and 7.62mm weapons all around. PSM won’t discuss mine-protection techniques, but say that the Puma has full mine protection in its Class A configuration per STANAG 4569 against heavy anti tank mines. As a comparison, PSM states that the Puma’s inherent mine protection is much higher than that of KMW’s Dingo 2 mine-resistant vehicles.
The exhaust is cooled before release to minimize infrared signature, and the company claims that the rear ramp can double as a 2-man fighting station when partly closed. Unlike Israel’s Merkava tanks, however, there is no sniper port in the rear door. The usual array of automatic fire extinguishers, NBC (nuclear, biological, chemical) overpressure protection, etc. defends against unconventional threats.
These IFVs can be quickly reconfigured for higher intensity combat by adding separately transported modular armor made of “steel and non-steel elements,” which raises the protection level up to ‘Class C’. The vehicle retains the same anti-mine protection as Class A, but now has strong protection on the sides that will defeat RPG-7 rockets, medium-caliber weapons fire up to 25mm, and Explosively Formed Projectile (EFP) mines. Explosive reactive armor can be added on request, and so can active protection systems (APS) that fire rockets or shockwaves to defeat incoming missiles or tank shells. The EADS/KMW/Buck MUSS APS is already integrated, and others can be added or substituted on request.
Special roof armor elements in Class C can provide protection the crew from air or artillery delivered bomblets, though they will not protect against an explosively formed projectile fired through the top, like Germany’s popular GIWS SMArt shells.
BW on PumaOptimum armament for escalation and de-escalation in all missions. The Puma has a remote-controlled turret that carries a 30mm MK30-2 ABM stabilized cannon with a 3 km/ 1.8 mil range for fire on the move, elevation from -10 to +45 degrees, and a coaxial 5.56mm MG4 machine gun. The fire control system reaches beyond armored vehicles, and can handle slow-moving aerial targets like helicopters and UAVs.
The remote control turret allows a unified crew compartment, without a turret basket that holds the commander and gunner. The vehicle carries 200 main rounds ready and another 200 in storage, and the dual-feed system allows the gunner to switch seamlessly between APFSDS-T armor piercing rounds and KETF submunition/fragmentation rounds with programmable fuzes. Grenade dispensers are mounted behind the turret for smoke etc.
At present, other commercial remotely-operated small-medium caliber weapon systems have not been integrated with the Puma’s remote-controlled main turret. That’s scheduled to be part of a 2nd stage vehicle upgrade program a few years after acceptance in 2014, along with anti-tank missiles that would bring Puma to parity with American Bradley IFVs, Russia’s BMP… and even the Marder IFVs Puma will replace.
At speedRapid, strategic, global deployability and high tactical mobility. A highly compact 890 series 10-cylinder, 800kW (1,080 hp) diesel engine from Tognum AG subsidiary MTU Friedrichshafen includes a new starter generator developed jointly with the company ESW, and a new transmission from Renk. If the Puma met its weight targets, that engine would offer a specific power-to-weight ratio of 20-25 kW/t, and can drive the Puma at up to 70 km/h/ 42 mph. Reports indicate that the final vehicle is overweight, which would push those performance figures down.
The Puma has 450 mm/ 18 inches of ground clearance despite its mine protection, and aims at an unrefueled range of 600 km/ 360 miles when equipped with full Class C protection. Decoupled running gear with hydro-pneumatic elements offers maneuverability and a smoother ride.
Deployability offers different challenges. The USA has spent billions in a fruitless quest to create survivable vehicles under 20 tons that can fit into a C-130, but Germany set a more realistic goal. The Puma’s Gross Vehicle Weight (max. recommended weight) is 43t/ 47.4 tons.
In its basic Class A configuration, Germany wanted a 31.45t/ 34.667-ton vehicle that can be airlifted in the Airbus A400M; indeed, the ability to carry the Puma is a firm requirement for Germany’s continued participation in the A400M program. If the A400M can meet this specification, the vehicle’s protection will be adequate for any landing strip secure enough to land the aircraft.
Add-on armor modules that improve the Puma’s protection to Class C raise its weight to a target of 41t/ 45.2 tons. A flight of 5 A400Ms could transport 5 Class A vehicles; alternatively, they could carry 4 Class A vehicles, 4 sets of Class C protection modules, and some additional equipment.
Infanterist Der ZukunftNetwork centric warfare capability. The Puma’s benefits from Germany’s world-renowned optronics industry, and uses the Leopard tank’s “hunter-killer” system that lets the gunner and commander acquire targets separately, and then automatically slews the turret to the designated victim upon handover. The hunter killer system is based on fiber glass optical transmission, and PUMA’s electrical architecture uses an “Open-Can-Bus-System” modular design with CPUs and I/O modules designed to be replaceable for future upgrades.
The vehicle will be compatible with Germany’s FuInfoSys battlefield C2 system, and its IdZ future infantryman setup, while IFF(identification, friend or foe) systems assist with combat identification.
A 170kW flywheel generator supplies power for the Puma’s various electrical systems, and the vehicle has enough battery capacity for temporary engine shut down. Long overwatch roles using its advanced sensors and communications will force the crew to run the engine in idle mode, however, in order to maintain power. PSM could not break through that limitation, but they strove to ensure low noise and fuel consumption when this option is used.
On the training side, PSM does offer a simulator and consoles, but embedded training also ensures that the Puma functions as its own simulator when requested. Maintenance functions have their own simulation packages.
Puma: Enter…Sustainability under extreme climatic conditions and inadequate infrastructural conditions. Recent operations have emphasized the importance of good air conditioning in vehicles; it’s hard to function when temperatures hit 50C/140F inside. Onboard BITE (Built in Test Equipment) “prognostics” monitor vehicle systems, and can warn of problems before they show up as system failures.
Beyond BITE, interactive electronic technical documentation is available with advice for troubleshooting, maintenance, and repairs. So is a parts catalog that includes options for Mission Support Kits of specific spares and consumables, together with special tool kits. This is the German definition of “sustainability under inadequate infrastructural conditions,” after all, not the Russian one.
Puma IFV: Project and Industrial Organization Puma: 3/4 viewThe Bundestag set the project in motion in September 2002 when it awarded a development contract for the new IFV. To address this need, German armored vehicle leaders Rheinmetall & KMW formed a 50/50 joint venture called Projekt System & Management GmbH in 2002. Typically, their goal was to produce the world’s best IFV, with a range of features that would give it an unmatched ability to cope with current and future threats.
The initial development contract was followed by a 2004 order for 5 pre-series vehicles and related services, which are currently undergoing intensive trials, and by a November 2007 production order. Both Krauss-Maffei Wegmann and Rheinmetall hailed the production decision as “a crucial step in reequipping the German Army for the future as well as being vitally important to the German defence industry and a whole host of medium-sized subcontractors.”
PSM would not elaborate on the exact list, but said that over 50 subcontractors were involved. The first serially produced PUMA are scheduled to enter service in 2010.
Overall, PSM has certainly produced Germany’s next IFV, creating a top-of-the line vehicle in its class. The translation into market leadership may prove more perilous. In order to find customers beyond their home country, PSM’s Puma must compete with advanced, versatile tracked competitors like BAE’s popular CV90 and its variants, Russia’s BMP-3, and South Korea’s amphibious K-21 NIFV. It must also compete with the lighter wheeled APCs that have become so popular in Europe, despite their terrain limitations. The German order for 350 vehicles will give the Puma a strong base, but European buys of competing vehicles to date, Asian competitors, America’s “not invented here” approach to major weapons, and Germany’s restrictive export policies are likely to make export sales challenging.
Puma IFV: Contracts & Key Events 2013 – 2018Problems surface, acceptance delayed; Upgrade will add missiles in a few years.
Heat lap trialJune 8/18: Severe delays The German Bundesrechnungshof, an agency comparable to the US Government Accountability Office is warning that the federal procurement of the new Puma infantry fighting vehicle will take years longer than previously thought. The Puma is jointly developed in a joint venture between Kraus-Maffei Wegmann and Rheinmetall. Rheinmetall is responsible for the development and design of the chassis. The vehicle is operated by a crew of three and carries up to eight equipped troops in the rear troop compartment. The vehicle is of modular construction which allows it to be fully air transportable on an A400M aircraft. The Puma is armed with a remotely controlled weapon station, developed by Kraus-Maffei Wegmann, which is fitted with a dual feed Mauser 30mm MK 30-2 cannon. Rheinmetall is responsible for the integration of the Mauser cannon and the ammunition handling system. At the current rate the integration of all required features into the platform will take until 2029, meaning that German ground forces will have to rely on the predecessor tank, the 40-some-year-old Marder. Preparations for sustaining the Marder beyond its envisioned end of life in 2025 are already underway, including retrofitting the vehicles with the MELLS anti-tank weapon.
2015July 28/15: The German Army has officially received its Puma Infantry Fighting Vehicles (IFV) from Rheinmetall and Krauss-Maffei Wegmann, following the fleet’s approval [German] in May, along with a delivery of seven vehicles as a training contingent. The German BWB procurement agency placed an order for 405 of the vehicles in July 2009 to replace the Bundeswehr’s fleet of Marder IFVs, subsequently revising the number down to 350 in July 2012. The full force of Puma vehicles is expected to be completed by 2020, with batches currently being received and passed to units for training before returning to home bases.
May 8/15: The German Army has approved [German] the Puma Infantry Fighting Vehicle for service, with seven vehicles forming an initial training contingent. The Puma will replace the current in-service Marder IFV, with the Germans placing an order for 405 Pumas in July 2009.
June 12/14: Heat Trials. Rheinmetall announces that its Puma has successfully completed firing and mobility trials in the UAE, in temperatures that ranged between 35-50C in the shade. The MK30-2/ABM automatic 30mm cannon and the MG4 7.62 machine gun both performed well in stationary and moving firing trials, the air conditioning system held up well and efficiently, and mobility trials went well in sand dunes, steep loose-surface tracks, and a rocky desert streambed.
With the completion of cold and hot-weather trials, the IFV is about ready for acceptance. Sources: Rheinmetall, “Puma stands up to heat and sand”.
Sept 17/13: Testing. German media report that testing at Germany’s Wehrteknik Dienstelle (WTD) testing center in Triel has revealed a number of design problems hampering the Puma IFV. Meanwhile, the program’s total estimated cost has risen to EUR 4.3 billion, which is a 39%/ EUR 1.2 billion jump beyond initial program figures.
Changes to the chassis have reportedly been required, with the number of wheel pairs raised from 5 to 6, and engine improvements have been necessary. Weight is reportedly an issue. Electronics are cited as inadequate to achieve the desired performance standards, and even weapon accuracy is questioned.
Meanwhile, German troops must continue using the Marder, which has limitations when fighting at night, and in counter-insurgency missions like Afghanistan where precise target identification is required. Sources: Volksfreund, “Ein Puma mit vielen Problemen” and “Bundeswehr-Panzer Puma wird 1,2 Milliarden Euro teurer”.
June 25/13: Upgrades. Germany will spend another EUR 500 million to develop the Puma after it finishes current trials, with most of these funds spent after 2017. Enhancements will reportedly include electronics upgrades, a remotely-operated machine gun station up top, and provision for anti-tank missiles.
The weapons upgrade will bring Puma to par with new unmanned IFV turrets, and with tracked IFV competitors like American Bradley and Russian BMP. Even the Marder IFVs Puma will replace can carry MBDA’s Milan anti-tank missiles. Sources: RP Online, “Schützenpanzer Puma soll aufgerüstet werden”.
2010 – 2012Germany cuts order to 350; US Army evaluates Puma as a comparison.
Puma AIFVJuly 25/12: Reduction. PSM:
“The German Bundeswehr and PSM GmbH formally agreed on the 11th of July 2012 a contract reduction from 405 to 350 AIFV PUMA – as a consequence of the realignment of the German Bundeswehr. Part of the agreement forms an extension of the qualification trial period until 30th of September 2013.
The cold climate trials in sub polar Norway have been successfully completed in April this year.”
The initial framework paper for this reduction had been written in December 2011, but it took a little while to negotiate the change. This is a 9-month extension for qualification tests, and deliveries are expected to begin in 2014. Sources: German BMVG (MoD), “Bundeswehr beschafft weniger Puma” | PSM GmbH, “Qualification Trial Period for AIFV PUMA Extended Until September 2013”
Reduced to 350
Aug 18/11: USA. The U.S. Army Contracting Command in Warren, MI issues awards to 2 of 3 Ground Combat Vehicle bidders. BAE Systems and General Dynamics each win over $400 million in Technology Development Phase contracts, but the SAIC/KMW “Team Full Spectrum” bid, based on Germany’s highly-regarded Puma IFV, does not go forward. US Army.
Jan 21/11: USA. SAIC’s “Team Full Spectrum” for the US Ground Combat Vehicle IFV submits a Puma-derived design, again, in response to the renewed November 2010 solicitation. Boeing, Krauss-Maffei Wegmann and Rheinmetall Defence will be subcontractors. Boeing.
Dec 6/10: Testing. Rheinmetall and KMW hand over the first 2 Puma infantry fighting vehicles, on time, to the German BWB in Kassel for verification tests. This marks the first deliveries under the 405-vehicles contract for the German Armed Forces. Rheinmetall.
May 24/10: USA. Future Combat Systems’ two Lead Systems Integrators, Boeing and SAIC, team with KMW in a bid for the US Army’s next-generation IFV: The Ground Combat Vehicle program. GCV is now separate from Future Combat Systems, with the cancellation of FCS’ ground vehicle array in the FY 2010 budget. Boeing’s release states that:
“The team’s offering draws from the experience gained from the Manned Ground Vehicle and the Puma programs and will be built in the United States with a team of experienced American small and mid-tier supplier businesses.”
2004 – 2009Development contract; Rollout; Main production contract; Interest from Canada.
Fahrvergnuegen…July 5/09: Contract. The full Puma production order is placed via a BWB procurement agency contract to the PSM GmbH joint venture, following successful tests of the initial 5 vehicles ordered in December 2004. These qualification and optimization tests were conducted by several Bundeswehr Technical Test Centres, and included practical trials at the Bundeswehr Armour School in Munster.
The EUR 3.1 billion (about $4.33 billion) contract covers 405 combat vehicles, along with Integrated Logistic Support and training packages. Deliveries are expected to run from 2010-2020. Sources: KMW release.
Base order: 405 vehicles
June 17/09: Formal approval of Puma IFV series production by the Federal Budget Committee of the German Parliament, as part of a larger package. Other elements of the approved defense package include 31 Trache 3a Eurofighters, 311 Spike-LR anti-armor missiles, 10 Wiesel 2 vehicles, and 5 minehnter ships. Sources: defpro.
Nov 17/08: Canada. Canada is reportedly looking to buy an IFV, and Germany’s Puma is reportedly a contender. Nevertheless, the Puma’s delivery schedule, pre-operational status, and lack of an in-place fleet available for immediate interim lease all weigh heavily against the vehicle’s chances.
In the end, no-one wins. Canada ends up canceling the CCV program more than once, and never buys anything.
Dec 10/07: Sub-contractors. Tognum AG subsidiary MTU Friedrichshafen announces that is about to receive the biggest single defense order in its history. With the Puma’s final tests scheduled for August 2008, MTU estimates that that the full order for the delivery of 405 drive systems with 10V 890 diesel engines will be placed by the end of 2008. “The order volume will probably amount to EUR 350 million and delivery will start in 2010.”
Nov 8/07: The German Bundestag’s budget committee clears the way for the procurement of 405 new Puma infantry fighting vehicles from PSM in Kassel, Germany. Rheinmetall AG in Dusseldorf and Krauss-Maffei Wegmann GmbH & Co. KG in Munich will effectively split a combined total of some EUR 3 billion (about $4.2 billion) in gross sales. Klaus Eberhardt, Chairman of the Executive Board of Rheinmetall AG, said that:
“This is the biggest single order in the history of our company, and definitely confirms our status as Europe’s top supplier of army technology.”
See: Rheinmetall release | KMW release.
May 5/06: PSM’s new PUMA infantry fighting vehicle is presented to the public during the Bundeswehr’s 50-year anniversary celebrations in Munster. Rheinmetall release.
UnveilingDec 20/05: Rollout. A prototype of the new AIFV Puma for the German Army was unveiled and presented to the German BWB contracting authority. PSM GmbH has thus met an important contractual milestone with the presentation of the so-called system demonstrator. Rheinmetall release.
Dec 2/04: Development. The Budget Committee of the German Bundestag gives the go-ahead for the new Puma infantry fighting vehicle, with a EUR 350 million contract to to Projekt System und Management (PSM) GmbH of Kassel for design activities and Low-Rate Initial Production of 5 testing vehicles. In total, the German Army is to be equipped with 410 vehicles, costing roughly EUR 3.05 billion. The decision just taken contains an option valid till 2007 for the full scale production of the infantry fighting vehicle (IFV). Rheinmetall release.
System Development contract
Additional Readings & SourcesSearch Tags: pumaifv